
Prime Computer, Inc.

BASIC/VM
Revision 18

FDR3341

TABLE OF CONTENTS
Typographic conventions 2

PRIMOS concepts 2

Elements of BASIC 4

Commands 8

Statements 12

System functions 25

Numeric system functions 25

String system functions 28

Masks for CVTSS 30

User-defined functions 30

Run-time error messages 31

ASCII character set 33

The Programmer's Companion is a new series of pocket-
size, quick-reference guides to Prime software products.
Published by Prime Computer, Inc.

Technical Publications, 500 Old Connecticut Path,
Framingham, MA 01701

Copyright ©1979, 1980 and 1981 by Prime Computer,
Inc.'

The information contained in this document reflects the
software as of Revision 18 and is subject to change
without notice. Prime Computer, Inc. assumes no
responsibility for errors that may appear in this
document.

First Printing, February 1979
Second Printing, Revision. March 1980
Third Printing, Revision, April 1981

Credits.

Research and copy.
Laura Douros
Deborah Horte
Design and production.
William Agush

Typesetting.
JL Associates

Conventions

TYPOGRAPHIC CONVENTIONS
abbreviation of PRIMOS commands: The minimum
required abbreviation of PRIMOS commands is shown in
rust colored letters. Only internal commands can be
abbreviated.

braces j j : Of a group of words or parameters contained
within braces, at least one must appear in command or
statement.

comma ,: Where a comma appears in a BASIC/VM state­
ment, it is required.

parentheses (): Parentheses, where they appear, are a
required literal part of the command or statement syntax.

square brackets [J: A word or parameter enclosed in
square brackets is optional.

PRIMOS CONCEPTS
binary file: A translation of source file generated by the
BASICV compiler.

byte: 8 bits; 1 ASCII character.

directory: A PRIMOS file directory; a special kind of file
containing a list of files and/or other directories, along
with information on their characteristics and location.
MFDs, UFDs, and subdirectories (sub-UFDs) are all
directories. (Also see segment directory.)

file: An organized collection of information stored on a
disk (or a peripheral storage medium such as tape). Each
file has an identifying label called a filename.

filename: A sequence of 32 or fewer characters which
names a file or a directory. Within any directory, each file­
name is unique. Directory names and a filename may be
combined into a pathname. Most commands accept a
pathname wherever a filename is required.
Filenames may contain only the following characters:

A-Z. 0-9. # S + . *

The first character of a filename must not be numeric. On
some devices underscore () prints as backarrow (—).

PRIMOS Concepts

file unit: A number between 1 and 63 ['77} assigned as a
pseudonym to each open file by PRIMOS. This number
may be given in place of a filename in certain commands,
such as CLOSE. PRIMOS-level internal commands re­
quire octal values. The maximum number of units that
each user may have opened at one time is determined on a
per-installation basis. Certain commands oractivit ies use
particular unit numbers by default, e.g., unit 127 reserved
for COMOUTPUT files.

PRIMOS assigned units
INPUT, SLIST
LISTING
BINARY
AVAIL
COMINPUT
SEG's loadmap
COMOUTPUT
EDITOR
SORT
RUNOFF

Octal
1
2
3
5
6

13
77
1,2
1-4
1-3

Decimal
1
2
3
5
6

11
63
1,2
1-4
1-3

pathname: A multi-part name which uniquely specifies a
particular file (or directory) within a file system tree. A
pathname (also called treename) gives a path from the
disk volume, through directory and subdirectories, to a
particular file or directory. Pathnames and filenames can
be used interchangeably in most PRIMOS and BASIC
commands.

segment directory: A special form of directory used in
direct-access file operations. Not to be confused with
directory, which means "file directory".

source file: Afile containing programming language state­
ments and data as entered from the terminal.

subdirectory: (also called sub-UFD) a directory that is in a
UFD or another subdirectory.

treename: A synonym for pathname.

Elements of BASIC

ELEMENTS OF BASIC
array: A list or table of contiguous numeric or string
values in one- or two-dimensional form. Arrays are
named by singly or doubly subscripted numeric or string
variables, e.g., A(l) or A(l,2). See also matrix.

characters: The following characters are accepted by the
BASIC/VM subsystem.

• Upper and lowercase letters A-Z
• Digits from 0-9
• Special characters ':+*/(),.$ blank (space)

commands: Directives to BASICV subsystem issued at
command level in upper or lowercase ">", in response to
">" prompt. Commands do not require line numbers as do
statements. Some commands may be used as statements
in programs and are so indicated in the list of system
commands.

comments: May be included in programs for notation and
are preceded either by REM or a "!". They may be in upper
or lowercase and are ignored by the system.

constants: Can be either a numeric or a literal (quoted)
string whose value does not change during program
execution.

numeric string positive or negative integers,
decimal or exponential expres­
sions,

literal string sequence of characters enclosed
in single or double quotes. Maxi­
mum length is 160 characters.

data type: BASIC/VM supports double-precision, float­
ing-point numeric data and string data. Numbers have up
to 13 significant figures in the mantissa and 2 significant
figures in the exponent.

expressions: Various ordered combinations of constants,
variables, operators, and functions that can be arith­
metically or logically evaluated.

foreground file: The file currently open in the users work­
ing directory.

Elements of BASIC

functions: BASIC/VM provides a set of numeric and
string system functions identified by a 3 or 4 letter name,
plus a dollar sign ($) for string functions, followed by
parenthetically enclosed arguments. BASIC/VM also
supports both numeric and string user-defined functions.
User-defined numeric functions are identified by the
letters FN, followed by a numeric variable, e.g. FNQ,
FNQ8. User-defined string functions are named by the
letters FN followed by a string variable, e.g. FNQ$.

matrix: A matrix is that part of a one- or two-dimensional
array with non-zero subscripts. Example:

Array A
(0,0) (0,1)
(1.0) (1,1)
(2,0) (2,1)

(0.2)
(1.2)
(2.2)

matrix A

The complete set of BASIC/VM matrix operations is
found in the rear.

operands: Elements manipulated by a program. These are
constants, variables, and arrays.

operators: Connect operands and indicate how they are to
be manipulated by the program. BASIC/VM supports
three types of operators: arithmetic, logical, relational.

operators, arithmetic: Unary or binary. Unary operations
indicate the sign (+ or -) of a number. Binary operations
require two operands, e.g., A+B.

Operator
+

*
/
or**

MOD

MIN
MAX

Definition
Addition (unary positive)
Subtraction (unary negative
Multiply
Divide
Exponentation
Remainder from division
modulus
Select lesser value
Select greater value

Example
A + B, + A
A - B. - A
A*B
A/B
A B , A**B
A MOD B

A MIN B
A MAX B

Elements of BASIC

operators, la
Operator
AND
OR

NOT

^ical: Connectives for relationa

Meaning
True if both A and B are true
True if either A, B or both are
true
If A is true, NOT A is false

1 expressions.

Form
A AND B

A OR B
NOT A

operators, relational: Used with conditional statements
and statement modifiers. There are six relational
operators:

Operator
<
>
=
<=
<=
> =
=>
< >

> <

Meaning
Less than
Greater than
Equal

Less than or equal

Greater than or equal

Not equal

Example
A<B
A>B
A$=B

A<=C

A=>C

A O D

operators, priority of: Expressions are evaluated in order
of operational priority. The priority list from highest to
lowest for BASIC/VM is:

() Parenthetical Expressions
FN System and User-defined Functions
" (or **) Exponentiation
NOT, Unary [+ -)
*, /, MOD
+, -

MIN, MAX
Rela t iona l (=, >, < , =>, <=, < >)
AND
OR

Within each level the evaluation orderis from left to right.

operators, string: String operands take only the above
relational operators plus a concatenation operator (+) for
combining two strings.

statements: Statements are upper or lowercase directives
included in a program and preceded by a line number.
Some may be used as commands and as such are not pre­
ceded by line numbers.

Elements of BASIC

statement syntax: Statements must adhere to the follow­
ing rules:

1. Each statement must be contained on one line.
2. Statements must not exceed 160 ASCII characters

in length.
3. Portions of the statement (i.e.. string literals) which

the user wishes processed verbatim must be
enclosed in single or double quotes.

4. Statements should be separated from their identify­
ing line numbers with a blank space to avoid
misinterpretations.

5. Statements cannot be abbreviated.

statement numbers: Statement numbers are one to five
digit numbers ranging from 1 to 99999. Successive state­
ments are generally numbered in ascending order in incre­
ments of 10, for ease of insertion of new statements.

variables: Variables are representations of data to which
values are assigned. BASIC/VM supports four types of
variables:

numeric scalar Single letter (A-Z) option­
ally followed by a single
digit (0-9): 286 may be de­
fined per program. Ini­
tialized to zero at the start of
program execution,

string scalar Single letter (A-Z) followed
by a dollar sign ($), or by an
optional decimal digit and a
dollar sign. Initialized to null
at start of program exe­
cution,

numeric subscripted Single numer ic v a r i a b l e
followed by one or two
values enclosed in parenthe­
ses. Also called an array,

string subscripted Single string variable fol­
lowed by one or two values
enclosed in paren theses .
Also known as string arrays.

Commands

Legal and Illegal Variables

Type
numeric
scalar

string
scalar

numeric
subscripted

string
subscripted

Legal
A2 A
X4 Z

B$
A2$

A2(l) A(1.2)
A(l] A2(l,2]

A$(l) A$(l,2)
A2$(4) A2$(l,2)

Illegal
ABl AR
X14 BZ

AB$ AB3$
A21$

A12(1)
AB(1,2)

A12$(1,2)
AB$(1)

COMMANDS
Command abbreviations are in rust.

ALTER line-number

Changes any portion of specified line with parameters
listed below. Re

Parameter
A/string/
Bnn

Cc

Dc
Enn
F
I/string/

Mnn
N

O/string/

:urns colon prompt until QUIT is typed.

Effect
Append string to end of line.
Move pointer back nn characters
(where nn is any integer).
Copy line up to but not including c
(where C is any character).
Delete line up to but not includingc.
Erase nn characters.
Copy to end of line.
Insert string at current position.
(The slash may be any delimiter not
used as part of the string.)
Move nn characters.
Reverse meaning of next Cor Dpara­
meter (copy until character = <c , or
delete until character = >c) .
Overlay string on line from current
position. A'!' changes a character to a
space, a space leaves character
unchanged.

Commands

Q Exit from ALTER mode.
R/string/ Retype line with string from current

position.
S Move pointer to start of line.

ATTACH pathname

Attaches to directory specified by pathname.

BREAK | „ j lin-num-1 [,...lin-num-n]

Sets and unsets breakpoints at specified statement lines.
Maximum of 10 may be set.

CATALOG [options]

Lists all filenames under current directory.

options
DATE

PROTECTION

SIZE

TYPE
ALL

Returns date and time when file
was last modified.
Returns protection attr ibutes on
file.
Returns size of each file (in
records).
Indicates file type.
Returns all of above information.

CLEAR

Resets all previously defined numeric variables to zero,
all string variables to null. Deallocates defined arrays and
closes open files.

/ pathname \
r n M I N I D J CONTINUE f COMINP < p A U S E \

\ TTY /

Opens and reads commands in file specified by pathname.
If control options are specified, command file halts at
COMINP PAUSE, resumes with COMINP CONTINUE.
Reads commands in file until COMINP TTY is reached.
Takes unquoted argument. Also used as a statement.

COMPILE [pathname]

Translates source file into executable binary form. Dis­
plays compile-time errors. Optional pathname specifica­
tion saves binary file to disk. All Rev. 16 programs must
be recompiled to run under Rev. 17.

Commands 10

CONTINUE

Resumes program execution after PAUSE or breakpoint.

DELETE j |in-num-1....lin-num-n j
(lin-num-1 — lin-num-n)

Deletes specified statement lines from program.

EXECUTE [pathname]

Executes indicated file (binary or source) or foreground
file if no pathname is specified; also displays run-time
errors.

EXTRACT j l!"-™™-1 .-lin-num-n j
(hn-num-1 — lin-num-n)

Deletes all except specified lines. Statements must be in
ascending order.

FILE [pathname]

Saves all input and modifications to current file under
original filename or to specified pathname.

LBPS

Lists currently set breakpoints.

LENGTH

Reports total number of statements in current program.

lin-num-l,...lin-num-n
lin-num-1 — lin-num-n

Displays contents of foreground file or specific lines of
file. NH option suppresses program header, (time, date
etc.]

LOAD pathname

Merges external program with foreground program. Line
numbers in the external file duplicated in the foreground
file are overwritten by those in the external file. If loaded
file is binary, it is loaded into user memory and is not
merged with foreground file.

NEW [pathname]

Indicates new file is to be created with specified name.

OLD [pathname]
Calls pre-existing file to foreground.

I,IST[NH[

Commands 11

PEKF I OFF I lin-num-1 - lin-num-2 I
J 111ST / screen-size (\Y(;\lin-num-l - lin-num-2 /
f TAHI.ll ?CNT> I

(T I L)

Turns performance measurement feature ON or OFF;
measures program efficiency. Must be issued prior to
compilation. TABLE option prints these statistics:

AVG
CNT

DEV
SN
SQSUM
TTL

average statement execution time
number of times each statement was
executed
standard deviation of execution lime
statement number
total squared-sum of statement run-time
total running time of each statement

Times are measured in "ticks", at 3.03 msec per tick.
l in-num-1 specifies statement number at which to start
display, l in-num-2 statement number at which to stop
display.

HIST displays statement statistics in histogram form
scaled according to screen-size, in number of characters;
default is currently set margin (default margin = 80 chars).
Symbols used in histogram display are:

. CNT
* AVG
+ TTL

PURGE |pathname]

Deletes specified file from directory. Default: deletes fore­
ground file. File must be closed in order to PURGE.

QUIT

Returns control to PRIMOS from BASICV command
level. Closes all files opened by BASICV and deletes tem­
porary files created by BASICV.

RENAME newname

Changes name of foreground file but does not rename orig­
inal disk copy of the file; two copies of the same file will
exist with different names if renamed file is FILEd.

Statements 12

RESEQUENCE [new-start] [.old-start] [,new-incr]

Renumbers statement in the foreground program, new-
start is the actual number with which line renumbering
will begin. (Default 100). old-start is the existing line
number at which to begin renumbering. (Default: lowest
numbered line), new-incr specifies increment value.
(Default is 10).
RUN]NH] [lin-num]

Begins compilation and execution of foreground source
file (at lin-num if option specified.) Prints program name.
No binary file stored.

TRACE
(O N j
(OFF J

Displays in brackets all statement numbers as they are
executed until TRACE OFF is typed. Used to examine pro­
gram logic flow.

TYPE pathname

Displays specified file at terminal but does not replace file
in foreground.

STATEMENTS

{ PRIMKEY)

KEV-zero-expr >

KEY J
ADD sunit . str-expr-1, < KEY-zero-expr > str-expr-2 keylist

(KEY J
where keylist = [.KEY num-expr-1 str-expr-3]*

Adds record, str-expr-1, to MIDAS file, opened on unit. A
primary key, PRIMKEY, KEY-zero-expr or KEY and its
value, str-expr-2, must be supplied. One or more
secondary keys may be specified in keylist. which con­
tains the names, num-expr-1, and value(s), str-expr-3. of
the secondary key(s). * indicates repetition of expression
as necessary.

CALL subr-name (arg,...[.arg])

Calls any declared and shared system, non-system or
library routine from within a BASIC VM program. See
SUB FORTRAN.

CHAIN pathname
Closes all open files and transfers program control lo
external program specified by pathname.

Statements 13

CHANGE < - \ u m - a r r a y TO > S , r " V a r I nu
\ sti r-expr I (num-array I

Transforms ASCII character string, str-expr, into a one-
dimensional numeric array (num-array) containing the
decimal value of the string, or transforms a numeric array
to its ASCII equivalent, str-var. ASCII characters and
their decimal equivalents are listed in the rear.

CLOSE sunit-l,...unit-n

Closes file opened on unit, where n is maximum of 12.

CNAME oldname TO newname

Changes name of specified file.

/ pathname \

r n M I W P J CONTINUE f COMINP < p A U S E >

V TTY /

Stops execution of current program and executes com­
mands from command file specified by pathname, a string
expression. COMINP PAUSE and COMINP CONTINUE
temporarily halt and restart a program respectively. Com­
mands in file are executed until COMINP TTY is reached.
Also used as a cpmmand.

DATA item-l,...item-n

Lists numeric and string constants to be accessed by a
READ statement.

[READ

APPEND
FILE -unit filename [,type-code| [.record-size]

Opens file, named by filename on specified unit.
Optionally assigns file type and access method, indicated
by type-code. Type-codes are listed in the following table.
If no type-code is given, the default (ASC) is assumed.
Record size (default = 60 words) can be increased or
decreased by specifying record-size, a numeric expres­
sion. For MIDAS files, record-size should be set equal to
the combined length of the data record and the primary
key specified during CREATK. Access may be restricted
to read or append with the READ or APPEND options
respectively. A file DEFINEd as a READ file is assumed to
exist.

Statements 14

Note
The terminal can be assigned as a file
unit using the ("ASR") filename.

Table of Type-Codes
Access

Type-Code Method Contents
ASC SAM ASCII data, formatted like
(default) t e rmina l ou tpu t , us ing

BASICV PRINT conven­
tions, e.g., commas, colons
and semi-colons, all dictate
the appropriate number of
spaces to be used as data
delimiters. Records vari­
able-length and easily in­
spected.

ASCSEP SAM ASCII data stored with
commas inserted as data
delimiters. Data are stored
and read back exactly as
entered. Records fixed-
length, accessed sequen­
tially.

ASCLN SAM ASCII data with comma
delimiters, and line num­
bers inserted in increments
of 10 at the start of each
record. Takes 6 characters.
Designed to be edited as
BASICV command level.

ASCDA DAM Similar to ASCSEP. Re­
cords f ixed- length and
blank-padded as neces­
sary. Direct access method
used for quick, random
access to any record in the
file.

Statements 15

BIN SAM Data storage transparent
to user. Records are fixed-
length, accessed sequen­
tially. String data stored in
ASCII code: numeric data
stored in four-word float­
ing-point form. Provide
maximum precision and
compactness of numeric
data, but cannot be in­
spected by TYPE etc.

BINDA DAM Same as BIN but direct
access method is used for
r andom record acces s .
Records not data-filled are
zeroed out.

SEGDIR SPECIAL Identifies file as a segment
d i r e c t o r y . S u b o r d i n a t e
files, identified by number,
may be SAM, DAM or
other SEGDIR files. An
additional DEFINE is re­
quired to access a subordi­
nate file.

MIDAS SPECIAL Multiple Index Data Ac­
cess files. Created by
P r ime- supp l i ed MIDAS
utilities.

DEFINE SCRATCH FILE #unit [,file-type] [,record-size]

Opens a temporary file on specified unit. When unit is
closed, the scratch file is automatically deleted.

DEF FN var [(arg-l....arg-n)] = expression

Defines a one line function named by var, (a string or
numeric variable), with no FNEND statement. Arguments
(arg-1 to arg-n) are numeric to string scalar variables
only.

Statements 16

DEF FN var [(arg-l....arg-n)]

FNEND

Defines a user-defined numeric or string function, of one
or more lines. The last line must be FNEND. var is a simple
numeric or string variable, arg-1 to arg-n are dummy
arguments for the function; may be numeric or string
scalar variables.

n . . . ((num-con))
DIM array { ; „ „. > I (num-con-1, num-con-2) (

Defines the dimensions of a numeric or string array repre­
sented by (num-con) and (num-con-1, num-con-2),
numeric constants. Default: (10) or (10,10). Variables are
not legal in DIM statements.

DO

DOEND
ELSE DO

DOEND

Sets up a series of statements in association with IF-
THEN statements, executed if a specified condition is
met. DOEND indicates the end of the series. ELSE DO is
an optional alternative to previous set of DO statements.

END
Terminates program execution. Serves as messageless
STOP.

ENTER time-limit, time-var, var

Allows a specified number of seconds, time-limit, range 1
to 1800, for user input of a value to numeric or string vari­
able, var, indicated. No prompt is given, time-var, a
numeric variable, represents the actual time taken to
enter value. Only one value can be input from the terminal
with each ENTER statement.

Statements 17

ENTER » user-num-var [,time-limit, time-var, num-var]

Sets user number assigned at LOGIN to numeric variable,
user-num-var. Remainder of options same as for ENTER
above.

ERROR OFF

Turns off all error traps in conjunction with ON ERROR
GOTO mechanism.

FOR index= start TO end [STEP incr]

Specifies beginning of loop. Used with NEXT statement.
The loop index is specified by index, a numeric variable;
the initial value of the index is set to start , a numeric
expression, the increment value is set by incr and the final
value of the index is represented by end, a numeric
expression.

FOR index= start STEP incr \ nKiT iT (condition-expr

Specifies the beginning of a conditional loop, condition-
expr, a conditional expression, determines how long the
loop will be executed. See above for other parameters.

GOSUB lin-num

Unconditionally transfers program control to an internal
subroutine beginning at specified lin-num. A RETURN
must be executed terminating subroutine. Up to IB
GOSUB statements may be nested.

GOTO lin-num

Transfers program control forward or backward to a
specified lin-num. A loop is created when the specified
line-number appears prior to the GOTO statement. May
be used with IF.

I GOTO lin-num-1) (..)
IF expr < THEN Iin-num-1 > ELSE h n " n u m - 2 J

(THEN statement-1 J [_ (s t a t e m e n t ^

Transfers program control depending on the value of a
relational, logical or numeric expression, expr. lin-num is
the statement number to which program control is t rans­
ferred if the expression is true, statement-1 is executed if
the preceding expression is true. If the expression is not

Statements 18

true, either statement-2 will be executed, or control will
be transferred to lin-num-2, depending on which, if any, is
specified. If expr is not true, and no alternative is pro­
vided, the next sequential statement is executed.

INPUT ['prompt-string,'] var-l....var-n

Prompts user for input specified by var-1 through var-n
which are either numeric or string variables or array ele­
ments, separated by commas. If no prompt string is pro­
vided, the default prompt character (!) is returned.
INPUT LINE [prompt-string.] str-var
Prompts user, with optional 'prompt string', forstr-var , a
string variable or string array element. Accepts entire
input line, including colons, commas, and leading blanks
as one entry.

[LET] var = expr

The assignment statement, optional, var represents a
numeric or string variable or array element, expr is either
a numeric value, string expression or another variable.

LOCAL (var-1 . . . var-n I
(DIM var-1 (dim-1) ,(dim-2) J

Declares listed variables (var-1 -var-n) as local to func­
tion definition in which they appear, (dim-1) and (dim-2)
represent dimensions in a one- or two-dimensional array
or matrix. Loval variables cannot be LISTed during a
PAUSE or BREAK.

MARGIN
(value)
(OFF j

Sets number of characters per line to value, a numeric
expression. Range is 1 to 32767, the default is 80.
MARGIN OFF turns off all margin checking.

/ ZER \ I"
I CON f (di
1 IDN I (di
V NULL / L

iim-l.dim-2)

Sets initial value of matrix elements to zero, one, identity
or null, respectively. Also used to redimension a one-
dimensional matrix to dim, (a numeric expression), or a
two-dimensional matrix to dim-1,dim-2. NULL can only

Statements 19

be used for nulling string matrices. IDN transforms a
matrix into an identity matrix, one in which all elements,
except those on main left-to-right diagonal, are 0; the main
diagonal elements are 1.

m MAT mat-3 mat-1 i - I mat-2

Adds, subtracts or multiplies the elements of mat-1 and
mat-2 to form a target matr ix,mat-3. In multiplication, the
target matrix dimensions are the number of rows of mat-1
and the number of columns of mat-2.

MAT mat-2 = (expr) * mat-1

Multiplies each element of mat-1 by a specified numeric
value, expr, and assigns results to mat-2. If mat-2 exists;
its elements will be redefined and its dimensions will be
changed to that of mat-1.

MAT mat-1 = INV (mat - 2)

Assigns the inverse values of a square matrix mat-2
(Determinant not equal to 0) to the target matrix, mat -1 .

MAT mat-l= TRN (mat-2)

Calculates the transpose of the values of mat-2 and
assigns them to target mat-1 . A matrix is transposed by
rotating it along the main diagonal.

MAT INPUT [p r o m p t - s t r i n g] mat - l [mat-2]
(mat (*))!

"|mat-n J
Reads data from the terminal and assigns the values to
specified matrices, mat-1 throughmat-n.mat (*) indicates
that elements may be input until a new line is typed.
Matrix is automatically dimensioned to number of input
elements. Default prompt character is "!".

MAT PRINT mat-1 [....mat-n]

Prints indicated matrices mat-1 to mat-n at terminal. If a
matrix name is followed by a colon instead of a comma,
the elements will be separated by spaces instead of
columns when printed.

MAT READ mat-1 [....mat-n]

Reads values from a data list and assigns them to the ele­
ments of the specified matrix or matrices, until matrix is
filled.

Statements 20

MAT READ [*] #unit, mat-1 [,...mat-n]

Reads data from an external file and assigns them to ele­
ments of specified matrix or matrices. Optional *
indicates that all data from current record should be read
before a new record is read.

MAT WRITE ffunit, mat-1 [,...mat-n]

Writes an entire matrix or matrices to a file on the speci­
fied unit.

NEXT num-var

Defines the end of a loop beginning with a FOR statement.
The num-var matches the variable used with the com­
panion FOR statement.

ON num-expr GOSUB lin-num [....lin-num-n]
Transfers program control to a subroutine at a specified
line number depending on value of a numeric expression,
num-expr. When RETURN statement is reached, control
returns to statement following ON GOSUB. The value of
num-expr must be less than or equal to the number of
statement lines listed, else error occurs. If num-expr = 1,
control transfers to lin-num-1, if num-expr=2, control
transfers to lin-num-2, and so on.
ON num-expr GOTO lin-num-1,...lin-num-n
Transfers program control to one of a list of line numbers
(lin-num-1 to lin-num-n] depending on the value of the
numeric expression (num-expr). The value of num-expr
must be less than orequal to the numberof statement lines
value listed. If the expression value exceeds the numberof
lines listed, an error message is displayed.
ON END ffunit GOTO lin-num

Establishes a line number to which program control will
transfer when an END OF FILE occurs on specified unit.

ON ERROR GOTO lin-num

Establishes a line number to which program control
transfers when a run-time error occurs. Two variables,
ERR and ERL, and the function ERRS (num-expr), are
associated with ON ERROR GOTO.

Statements 21

ERR

ERL

ERRS (num •expr)

Variable set to the code num­
ber of the error which acti­
vated the ON ERROR state­
ment.
Line number being executed
when the error occurred.
Outputs actual text of error
message associated with an
error code represented by a
numeric expression, num-
expr.

ON ERROR sunit GOTO lin-num

Establishes a statement line to which program control
transfers when an I/O error occurs on the specified unit.

PAUSE

Acts as a BREAK command. Suspends program process at
line where PAUSE occurs. To resume program, type
CONTINUE.

POSITION #unit TO record-number

In direct access files, positions the internal record pointer
to a specified record-number in a file on the specified unit.
Works on ASC DA and BIN DA files. The error message,
END OF FILE, is displayed when pointer is positioned
Dast last record in file.

S SEQ
KEY [num-expr] -str-exf

SAME KEY
Positions a file read pointer to a specified record in a
MIDAS file opened on unit. If a secondary key number,
num-expr=0 and value, str-expr are not indicated, pointer
will position to primary key. If SEQ is supplied in lieu of
key, the next sequential record is positioned to; SAME
KEY positions to datum only if next key matches current
one.

cpr \

PRINT
LIN

<TABj
*SPA-

I \ILW \
> (num) ,...item-n,KTAB > (nu

item-1
' tsPA

Prints formatted information at the terminal. Item-1 to
item-n represent numeric and/or string values. LIN forces
the specified number (num) of carriage return — line feed
combinations between items in the output if number>0.

Statements 22

TAB forces tab to specified column number. SPA forces
number (num) of spaces between items in output. Num
specifies number of blank lines, tab positions or spaces to
be printed in the output. A comma in a print list causes
next item to be printed in next print zone. Each print zone
contains 21 characters. Semi-colons cause no spaces to
occur between printed items. Colons force one space
between items.

PRINT USING format-string, item-l....item-n

Generates formatted output according to format char­
acters in format-string, including a dollar sign, plus or
minus signs, decimal points and right-left justification.
item-1 through item-n represent string or numeric values.
A format-string may be a string constant or a string
variable.
Numeric format field characters

Specifies number of positions in field for
corresponding digits. Forces rounding off if
too few #'s are indicated for decimal number.
A row of asterisks is printed if too few #'s are
indicated for integer.

Forces decimal point to be included at appro­
priate position in number.
Forces comma to be inserted at appropriate
position in number unless all digits preceding
comma are zeros.

Forces representation of number in exponen­
tial form at indicated position. Each repre­
sents '"' 1 digit in the exponent field.

+ Forces sign of number to be printed where
indicated.

Forces minus sign to be printed where
indicated.

$ Forces dollar sign to be printed where
indicated.

< Left-justifies item in field.

> Right-justifies item in field.

Specifies number of positions in field for
corresponding character string item.

Statements 23

READ var-1...var-n
Reads numeric or string values from a DATA statement
within the program, var-1 through var-n are string or
numeric variables separated by commas. Begins accept­
ing values with first item in lowest numbered DATA
statement.

READ [KEY] #unit h.Kl
SEQ J

,EY (num-expr] str-expr], > .str-var
SAME KEY J

Reads data from specified record in MIDAS file on unit.
Data is read into str-var. If READ KEY is specified, the
key value is read into str-var. Num-expr and str-expr are
the key numbers and values, respectively, of the primary
or secondary key. SEQ reads next sequential record.
SAME KEY returns datum only if next key matches cur­
rent one.

READ LINE eunit. str-var

Accepts entire line of text (including commas and colons)
as one data item and puts it in str-var.

READ sunit, var-1,...var-n

Forces program to read a new record from the file on unit.
var-1 through var-n are values to be read beginning with
the first value in the current record.

READ * ounit, var-1,...var-n

Forces continued reading of data in current record before
new one is read, var-1 through var-n are values to be read
from current record and next record as necessary.

REM string

Indicates remark to reader. Exclamation point (!) is sub­
stituted for REM when comments are added to executable
statements.

REMOVE #unit [, KEY[num-expr] = str-expr]L

Deletes specified key from MIDAS file. If primary key,
num-expr = 0, is specified, data associated with key are
removed also. Multiple keys may be deleted with one
statement line; + indicates that bracketed expression may
be repeated as necessary.

Statements 24

REPLACE #unit SEG x BY SEG y

Deletes files referenced by indicated segment directory
(SEG x) on unit. Pointer at SEG y (segment y] is moved to
segment x; old pointer at SEG y is zeroed.

RESTORE { :
Instructs program to reuse list of data items beginning
with first item in lowest numbered DATA statement.
Numeric data items are reused by specifying #; string
items, by $. Both numeric and string items are reused if
neither symbol is specified. RESTORE must precede
READ # statement indicating data items to be reused.

RETURN

Causes control to be returned from GOSUB subroutine.

REWIND unit-1 [,unit-2,...unit-n]
Repositions record pointer to top of file on specified unit
or units.

REWIND #unit [,KEY num-expr]

Places pointer at top of MIDAS file opened on unit, at
column specified by KEY num-expr. If num-expr=0 or is
unspecified, pointer is positioned to primary key

(default).

SUB FORTRAN subr-name (arg-format,...[,arg-format])

Declares any shared system, non-system or library
routine which observes the FORTRAN calling sequence
inside a BASIC/VM program. Routines cannot be called
from BASIC/VM unless so declared.

STOP
Causes termination of program execution. Returns
message: STOP AT LINE lin-num.

UPDATE #unit [,str-expr]
Writes string expression, str-expr to current MIDAS file
open on unit. Overwrites the current record. Beware of
changing keys with UPDATE if keys are being stored in
record.

System Functions 25

WRITE ffunit, item-l....item-n
Writes data, string or numeric, specified by item-1
through item-n, (string or numeric variables), to the cur­
rent record or output device opened on unit. If no values
are specified, a blank line appears in the output. If file is
closed after WRITE # statement, all subsequent records in
file are truncated.
WRITE sunit USING format-string, item-1,...item-n

OR
WRITE USING format-string, sunit, item-1,...item-n
Formats items according to format characters in format-
string, including tabs, spaces, and column headings. Out­
put is written to current record or output device opened on
unit, item-1 through item-n are numeric or string vari­
ables or expressions. A format-string may be a string
constant or a string variable. See PRINT USING state­
ment for format characters.

SYSTEM FUNCTIONS
BASIC/VM provides both numeric and string system
functions for use in programming. User-defined functions
are also supported.

NUMERIC SYSTEM FUNCTIONS
Parameters
X Represents any numeric expression.
Y,Z Represent any integers.
XS Represents string expression.

ABS(X) Computes the absolute value of X.
ACS(X) Computes the principal arccosine of X.

The result is in radians in the range of 0
to 77. 360 degrees=2- radians.

ASN(X) Computes the principal arcsine of X.
The result is in radians in the range of
-7772 t o 7T72.

ATN(X) Computes the principal arctangent of
X. The result is in radians in the range
of - - 2 to TT/2.

Numeric Functions 26

COS(X)

COSH(X)

DEG(X)

DET(X)

ENT(X)

ERL

ERR

EXP(X)

INT(X)

LIN#(X)

LOG(X)

NUM

PI

RAD(X)

RND(X)

Computes the cosine of X. The argu­
ment is in radians. The result is in the
range -1 to +1.

Computes the hyperbolic cosine of X,
defined as (EXP(X)+EXP(-X/2).

Computes the number of degrees in X,
[(180/TI7*X] .

Computes the determinant of matrix
X. If DET(X) unequal to 0, matrix X
has an inverse.

Computes the greatest integer that is
less than or equal to X.
Returns the statement number of the
line which caused an error.

Returns the error code number of the
last error.

Computes e raised to the X power.

If X=>0, returns the greatest integer
<=X. If X<0, returns the least integer
> -X. INT performs integer truncation.

For ASC LN files, returns the state­
ment number stripped from the last
input on unit X. For DA files, returns
the current record positioned to in the
file on unit X.

Computes the natural logarithm (base
e) of X.

Returns the actual numberof entries to
MAT INPUT M(*) statement. Matrix
M is one-dimensional.

Computes the value of n (3.14159).

Computes the number of radians in X
degrees.
If X>0, uses X to initialize the random
number generator and returns X as the
function value. If X<0, uses X to ini­
tialize the random number generator,
and returns a value in the range zero to
one. If X=0. returns a random number
in the range zero <=result < 1.

Numeric Functions 27

SGN(X)

SINfX)

SINH(X)

SQR(X)

TAN(X)

TANH(X)

Computes a value based on the sign of
X as follows:
X<0 SGN(X)=-1
X=0 SGN(X)=0
X>0 SGN(X)=1

Computes the sine of X. The argument
is in radians. The result is in the range
-1 to +1.

Computes the hyperbolic sine of X
defined as (EXP(X)-EXP(-X))/2.

Computes the positive square root of
X.

Computes the tangent of X. The argu­
ment is in radians.

Computes the hyperbolic tangent of X
d e f i n e d as (EXP (X]-EX P (-X) /
EXP(X)+EXP(-X)).

String Functions 28

STRING SYSTEM FUNCTIONS
CHAR(X)

CODE(X$)

CVT$$(X$,Y)

DATE$

INDEX(X$,Y$,[Z])

LEFT(X$,Y)

LEN(A$)

TIMES

MID(X$,Y,Z)

RIGHT(X$,Y)

STR$(X)

SUB(X$,Y,|Z])

VAL(X$,[Y])

R e t u r n s the c h a r a c t e r
whose ASCII code is X. X is
in the range 128-255.
C o m p u t e s the d e c i m a l
ASCII code of the first char­
acter of XS.

Reformats XS according to
the mask Y. (Masks are
l is ted in the fol lowing
table.)

R e t u r n s t h e d a t e a s
YYMMDD.

Computes the starting posi­
tion YS in XS optionally
beginning at character Z.
Returns leftmost Y charac­
ters of XS.

Returns the length (number
of characters) of string AS.
R e t u r n s t h e t i m e a s
H H M M S S F F F . (FFF is
milliseconds)

Returns Z characters of X$
starting at position Y.
Returns rightmost charac­
ters of X$ beginning with
character number Y.
Returns the string represen­
tation of the number X.
Returns the substring com­
posed of c h a r a c t e r s Y
through Z of string XS. If Z
is not specified, the result is
a one character substring
consisting of character Y of
string X$.

Converts a string to the
number it represents. Y re­
turns the conversion status:
unsuccessful,
l=unsuccessful.

Masks for CVT$$ 29

MASKS FOR CVT$$
Masks can be combined additively.

Mask
1
2
4
8

16
32
64

128
256

Function
Force parity bit off.
Discard all spaces.
Discard .NUL., .NL.. .FF.. .CR.. .ESC.
Discard leading spaces.
Reduce multiple spaces to one space.
Convert lower case to upper.
Convert [to (and j to).
Discard trailing spaces.
Converts upper case to lower case.

USER-DEFINED FUNCTIONS
Users may define their own functions with the DEF FN
statement. Numeric function names are identified by the
letters FN followed by a letter or a letter and a digit, as in
FNA, FNA4. String functions are identified by FN fol­
lowed by a string scalar variable, as in FNQ$, FNQlS. The
arguments to a user-defined function must be numeric or
string scalar variables. If the function definition is more
than one line in length, the last line should be FNEND. A
user-defined function is not executed until it is referenced
in the program. A reference consists of the name of the
function followed by a parenthetically enclosed argument
expression, e.g. z=FNA(y).

Runtime Errors 30

RUNTIME ERROR MESSAGES
The following is a list of BASIC/VM error messages
which appear at run-time (execution time).

Code number
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25

26

27

28
29
30

31

Message
GOSUBS NESTED TOO DEEP
RETURN WITHOUT GOSUB
EXCESS SUBSCRIPT
TOO FEW SUBSCRIPTS
SUBSCRIPT OUT OF RANGE
ARRAY TOO LARGE
STORAGE SPACE EXCEEDED
BAD 1-0 UNIT
BAD FILE RECORD SIZE
DA RECORD SIZE ERROR
UNDEFINED 1-0 UNIT
WRITE ON READ ONLY FILE
END OF DATA
END OF FILE
FILE IN USE
NO UFD ATTACHED
DISK FULL
NO RIGHT TO FILE
ILLEGAL FILE NAME
FILE 1-0 ERROR
FILE NOT FOUND
INPUT DATA ERROR
VAL ARC NOT NUMERIC
BAD LINE NUMBER IN ASC IN
FILE
ILLEGAL OPERATION ON SEG­
MENT DIRECTORY
READ AFTER WRITE ON SE­
QUENTIAL FILE
ILLEGAL OPERATION ON BIN­
ARY FILE
UNDEFINED MATRIX
ILLEGAL SEG DIR REFERENCE
ILLEGAL FILE TYPE FOR POSI­
TION
ILLEGAL POSITION RECORD
NUMBER

Runtime Errors 31

32

33

34

35

36
37
38
39

40

41
42

43

44

45
46

47
48
49
50
51

52
53
54

55

56
57
58
59
60

WRITE USING TO NON-ASCII
FILE
P R I N T U S I N G S T R I N G IN
NUMERIC FORMAT
PRINT USING NUMERIC IN
STRING FORMAT
PRINT USING FORMAT WITH
NO EDIT FIELDS
BAD MARGIN SPECIFIER
MATRIX NOT SQUARE
MISMATCHED DIMENSIONS
OPERAND AND RESULT MUST
BE DISTINCT
2 DIMENSIONAL MATRIX RE­
QUIRED
INV MATRIX IS SINGULAR
MOD — SECOND ARGUMENT
ZERO
E X P O N E N T I A T I O N — BAD
ARGUMENTS
SIN, COS — ARGUMENT RANGE
ERROR
TAN — OVERFLOW
A S N , A C S — A R G U M E N T
RANGE ERROR
EXP — OVERFLOW
EXP — ARGUMENT TOO LARGE
LOG — ARGUMENT < = 0
SORT — ARGUMENT < 0
EXPONENT OVERFLOW, UN­
DERFLOW
DIVISION BY ZERO
STORE FLOATING ERROR
REAL TO INTEGER CONVER­
SION ERROR
ON GOTO-GOSUB OVERRANGE
ERROR
RECORD NOT FOUND
RECORD LOCKED
RECORD NOT LOCKED
KEY ALREADY EXISTS
SEGMENT FILE IN USE

Runtime Errors 32

61

62
63
64
65
66

67
68

69

70

I N C O N S I S T E N T R E C O R D
LENGTH
RECORD FILE FULL
KEY FILE FULL
IMPROPER FILE TYPE
PRIMARY KEY NOT SUPPLIED
ILLEGAL OPERATION ON UNIT
0
FATAL MIDAS ERROR
0 RAISED TO 0 OR A NEGATIVE
POWER
CONSTANT ON LEFT SIDE OF
ASSIGNMENT STATEMENT
MIDAS CONCURRENCY ERROR

ASCII CHARACTER SET

Decimal
Value

(with parity on)
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

ASCII
Character Explanation

Null or fill character
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge
Bell
Backspace
Horizontal tab
Line feed
Vertical tab
Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission
block

ASCII Characters 33

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

168

169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

189
190

191
192
193

1

"

S
%
&
*

(

)

*
+

.
-

1
0
1
2
3
4
5
6
7
8
9

;
<

=
>

?

@
A

Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator
Space
Exclamation point
Double quotation mark
Number or pound sign
Dollar sign
Percent sign
Ampersand
Apostrophe

Open (left) paren­
thesis
Closing (right) paren­
thesis
Asterisk
Plus
Comma
Hyphen or minus
Period or decimal point
Forward slant
Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine
Colon
Semicolon
Left angle bracket (less
than)
Equal sign
Right angle bracket
(greater than)
Question mark
Commercial at sign
(193 through 218 are
upper case characters)

ASCII Characters 34

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

211
212
213
214
215
216
217
218
219
220
221
222
223

224
225

226
227
228
229
230
231
232
233
234
235
236

B
C
D
E
F
G
H
I
J
K
L

M
N
0
P
Q
R

S
T
U
V

w
X
Y
Z
[
\

J

a

b
c
d
e
f
g
h
i
i
k
1

Open bracket
Backward slant
Closing bracket
Circumflex or up arrow
Underscore or
backarrow
Grave accent
(225 through 250 are
lower case characters)

ASCII Characters 35

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

m
n
0

P
q
r
s
t
u
V

w
X

y
z
{
1
}
~

Open (left) brace
Vertical line
Closing (right) brace
Tilde
Delete

	Front Cover
	
	Table of Contents
	Copyright
	1
	Typographic Conventions
	PRIMOS Concepts
	2
	3
	Elements of BASIC
	4
	5
	6
	7
	Commands
	8
	9
	10
	11
	Statements
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	System Functions
	25
	26
	27
	String System Functions
	28
	Masks for CVT$$
	29
	Runtime Error Messages
	30
	31
	ASCII Character Set
	32
	33
	34
	35
	36
	
	Back Cover

